SLIB Biology ## **Membranes & Membrane Transport** #### **Contents** - * Lipid Bilayers - * Membrane Proteins - * Membrane Transport - * Glycolipids & Glycoproteins - * The Fluid Mosaic Model: Skills ### **Lipid Bilayers** ## Your notes ### Lipid Bilayers: Basis of Cell Membranes - Phospholipids form the basic structure of cell membranes, which are formed from phospholipid bilayers - They are formed by a hydrophilic phosphate head bonding with two hydrophobic hydrocarbon (fatty acid) tails - As phospholipids have a **hydrophobic** and **hydrophilic** part they are known as **amphipathic** - The **phosphate head** of a phospholipid is **polar** and therefore **soluble** in water (hydrophilic) - The fatty acid tail of a phospholipid is nonpolar and therefore insoluble in water (hydrophobic) #### Phospholipid structure diagram #### Phospholipids consist of a molecule of glycerol, two fatty acid tails, and a phosphate group - When phospholipids are placed in water the hydrophilic phosphate heads orient towards the water and the hydrophobic hydrocarbon tails orient away from the water - This forms a phospholipid monolayer Head to www.savemyexams.com for more awesome resources #### Phospholipid monolayer diagram #### Phospholipids can form a monolayer in water - When there is a sufficient concentration of phospholipids present then two-layered structures may form - These sheets are called **phospholipid bilayers** #### Phospholipid bilayer diagram Page 3 of 21 A phospholipid bilayer is composed of two layers of phospholipids; their hydrophobic tails facing inwards and hydrophilic heads outwards ### **Lipid Bilayers: Barriers** - The phospholipid bilayer has two regions a hydrophobic core and a hydrophilic outer layer - The hydrophobic regions are attracted to each other and the hydrophilic regions are attracted to water in the cytoplasm or the extracellular fluid - These properties allow the bilayer to form a **barrier** - Large molecules cannot pass through the barrier as the hydrophobic region is tightly packed and has low permeability to larger molecules - Polar molecules and ions cannot pass through the hydrophobic tails of the phospholipid structure - The hydrophilic nature of these molecules and ions means that they will not interact with the hydrophobic fatty acid tails of the phospholipids - The bilayer forms an effective barrier so that it is able to control which molecules pass through and out of the cell #### **Membrane Proteins** ## Your notes #### **Membrane Proteins** - The phospholipid bilayer carries out the main function of the plasma membrane, providing a barrier to the movement of some substances into and out of the cell - Additional functions are carried out by **proteins** in the membrane - These proteins are grouped into two categories: - Integral - These are partially **hydrophobic**, i.e. they are amphipathic - They are embedded in the phospholipid bilayer - They can be embedded across both layers or just one layer - Peripheral - These are **hydrophilic** proteins - They are **attached** to either the surface of integral proteins, or to the plasma membrane via a hydrocarbon chain - They can be **inside** or **outside** the cell - The protein content of membranes can vary depending on the function of the cell - E.g. membranes of the mitochondria and chloroplasts have the highest protein content with their many electron carriers #### Membrane protein functions Membrane proteins carry out many functions: transport, receptors, cell adhesion, cell-to-cell recognition and immobilized enzymes #### **Transport** - Transport proteins allow ions and polar molecules to travel across the membrane - There are two types: - Channel proteins - These form holes, or pores, through which molecules can travel - Carrier proteins - Carrier proteins change shape to transport a substance across the membrane, e.g. protein pumps and electron carriers - Each transport protein is specific to a particular ion or molecule - Transport proteins allow the cell to **control** which substances enter or leave #### Receptors - Receptors are for the binding of peptide hormones, e.g. insulin, neurotransmitters or antibodies - The binding generates a signal that triggers a series of reactions inside the cell #### Immobilised enzymes - Immobilized enzymes are integral proteins with the active site exposed on the surface of the membrane - They can be inside or outside the cell Head to www.savemyexams.com for more awesome resources #### Cell adhesion • Cell adhesion allows cells to attach to neighbouring cells within a tissue #### Cell-to-cell recognition - Glycoproteins act as cell markers, or antigens, for cell-to-cell recognition - E.g. the ABO blood group antigens are glycolipids and glycoproteins that differ slightly in their carbohydrate chains #### Plasma membrane proteins diagram - 1 RECEPTOR e.g. HORMONE RECEPTOR (INSULIN) - 2 IMMOBILIZED ENZYME e.g. MALTASE - 3 CHANNEL e.g. SODIUM IONS - 4 CHANNEL VOLTAGE-GATED e.g. POTASSIUM IONS - 5 CARRIER ELECTRONS e.g. CYTOCHROME - 6 CARRIER-PROTEIN PUMP e.g. SODIUM-POTASSIUM PUMP - 7 CELL-TO-CELL RECOGNITION e.g. GLYCOPROTEIN-ANTIGEN - 8 | CELL ADHESION - 9 ANCHOR PROTEIN Copyright © Save My Exams. All Rights Reserved #### Membrane proteins have multiple functions #### Page 6 of 21 ## Examiner Tip ## **Membrane Transport** ## Your notes ### Simple Diffusion - Simple diffusion is a type of **membrane transport** that involves particles passing directly between the phospholipids in **the plasma membrane** - It can be defined as: The net movement, as a result of the random motion of molecules or ions, of a substance from a region of higher concentration to a region of lower concentration - The random movement is caused by the **kinetic energy** of the molecules or ions - The molecules or ions are said to move down a concentration gradient - If diffusion takes place for a long enough time period, molecules eventually reach **equilibrium**, where they are **evenly distributed** on either side of a membrane - Examples of molecules that move by simple diffusion include - Oxygen - Oxygen diffuses into cells from the surrounding capillaries - Respiration uses up oxygen, resulting in a low concentration inside cells and so generating a concentration gradient #### Carbon dioxide - Carbon dioxide diffuses out of cells and into the surrounding capillaries - Respiration produces carbon dioxide as a product, resulting in a high concentration inside cells and so generating a concentration gradient #### Simple diffusion diagram ## Simple diffusion involves the movement of molecules directly between the phospholipids of a cell membrane - The rate at which a substance diffuses across a membrane depends on several factors: - 'Steepness' of the concentration gradient - The greater the difference in concentration across a membrane, the higher the rate of diffusion - Temperature - The higher the temperature the higher the rate of diffusion - The molecules have more kinetic energy at high temperatures, so random movement of molecules is faster - Surface area - The greater the surface area the higher the rate of diffusion - Properties of the molecules or ions - Large molecules diffuse more slowly as they require more energy to move - Uncharged molecules, e.g. oxygen, diffuse faster as they move directly across the phospholipid bilayer - **Non-polar** molecules diffuse more quickly as they are soluble in the non-polar phospholipid bilayer - Although polar molecules cannot easily pass through the hydrophobic part of the membrane, smaller polar molecules (e.g. urea) can diffuse at low rates #### **Osmosis** Osmosis can be defined as: The diffusion of water molecules, from a dilute solution to a solution with a higher solute concentration, across a partially permeable membrane - In doing this, water is moving down its concentration gradient, and so osmosis can be said to be a type of diffusion - A dilute solution has a high concentration of water molecules and a concentrated solution has a low concentration of water molecules - As with facilitated diffusion, osmosis occurs as the result of the random movement of molecules, so is technically the net movement of water - While water can move directly in between the phospholipids, channel proteins called aquaporins allow water to pass through membranes more freely - Water is unusual for a polar molecule in its ability to pass directly across cell membranes #### Movement of water molecules diagram #### Water molecules can cross partially permeable membranes - Osmosis can also be described as the net movement of water molecules from a region of higher water potential to a region of lower water potential, through a partially permeable membrane - Water potential describes the tendency of water to move; this term is used to avoid confusion between water concentration and solute concentration of a solution Head to www.savemyexams.com for more awesome resources #### Osmosis diagram Osmosis is the movement of water molecules from a dilute to a concentrated solution across a partially permeable membrane #### **Facilitated Diffusion** - Some substances cannot diffuse through the phospholipid bilayer of cell membranes, e.g.: - Large molecules - Polar molecules - lons - These substances can only cross the phospholipid bilayer with the help of transport proteins - This form of diffusion is known as facilitated diffusion - There are two types of proteins that enable facilitated diffusion: - Channel proteins - Carrier proteins - Transport proteins are highly specific, meaning that they only allow one type of molecule or ion to pass through - During facilitated diffusion the net diffusion of molecules or ions into or out of a cell will occur down a concentration gradient - Facilitated diffusion is a **passive** form of transport; it does not require energy - The direction of movement of molecules through a transport protein depends on their relative concentration on each side of the membrane #### **Channel proteins** - Channel proteins are **pores** that allow the passage of specific substances across a membrane - They allow charged substances (eg. ions) to diffuse through the cell membrane - Some channel proteins are **gated**, meaning that part of the channel protein on the inside surface of the membrane can move in order to close or open the pore - This allows the channel protein to **control** the exchange of ions #### Channel protein diagram Channel proteins are membrane pores; some channel proteins can open and close #### **Carrier proteins** - Unlike channel proteins, which have a fixed shape, carrier proteins can switch between two shapes - The substance to be transported attaches to a binding site, causing a shape change in the carrier protein - Initially the binding site of the carrier protein is open to one side of the membrane - When the carrier protein switches shape it opens to the other side of the membrane #### Carrier protein diagram Carrier proteins change shape to carry substances across cell membranes ## Examiner Tip Remember that the movement of molecules from **high concentration to low concentration** is diffusion; this movement is **passive** and requires no energy - If this movement requires the aid of a protein then it is facilitated diffusion - If it involves the movement of water across a partially permeable membrane it is osmosis. ## **Active Transport** • Active transport can be defined as: The movement of molecules and ions across a cell membrane, from a region of lower concentration to a region of higher concentration, using energy from respiration - Active transport occurs **against**, or **up**, a **concentration gradient** - Active transport requires carrier proteins - Carrier proteins in active transport are sometimes known as **pumps** - Although facilitated diffusion also uses carrier proteins, active transport is different as it requires energy - Energy is required to allow the carrier protein to change shape, allowing it to transfer the molecules or ions across the cell membrane - The energy required is provided by ATP (adenosine triphosphate), produced during respiration. - The ATP is **hydrolysed** to release energy #### Active transport diagram OUTSIDE CELL (LOWER CONCENTRATION) CARRIER MOLECULE (CELL MEMBRANE) a CONCENTRATION GRADIENT INSIDE CELL (HIGHER CONCENTRATION) **Save my exams** Page 14 of 21 Active transport is the transport of substances across cell membranes from low to high concentration ## Your notes ## **Selective Permeability** - Facilitated diffusion and active transport are mechanisms that allow cell membranes to be selectively permeable - Selective permeability is the ability of the membrane to differentiate between different types of molecules, only allowing some molecules through while blocking others - **Simple diffusion** provides less control for cell membranes, as it is dependent only on the size and hydrophobic or hydrophilic nature of the molecules diffusing - Simple diffusion provides no ability for membranes to be selective with regard to small, polar molecules - Small, non-polar molecules can diffuse across the membrane with ease so this is not selective - Simple diffusion does allow for selective permeability with regard to large or polar molecules - Large or polar molecules cannot cross the phospholipid bilayer without transport proteins ## **Glycolipids & Glycoproteins** # Your notes ## Glycoproteins & Glycolipids - Glycoproteins are cell membrane proteins that have a carbohydrate chain attached on the extracellular side - Extracellular = outside cells - Glycolipids are lipids with carbohydrate chains attached, also located on the outer surface of cell membranes #### The function of glycoproteins and glycolipids - The carbohydrate chain enables them to act as **receptor molecules** - This allows them to **bind** with substances at the cell surface - Receptor types include: - Signalling receptors which bind to hormones and neurotransmitters - Receptors involved in endocytosis - Receptors involved in **cell adhesion** and **stabilisation** - Cell adhesion allows cells to attach to each other to form tissues - Some act as cell markers, or antigens, for **cell identification** - E.g. this allows the immune system to determine whether or not a cell belongs in the body, or whether it is a pathogen Glycoproteins and glycolipids diagram #### OUTSIDE (OF CELL) Glycoproteins are carbohydrate chains attached to membrane proteins and glycolipids are carbohydrate chains attached to the lipid element of the cell membrane Head to www.savemyexams.com for more awesome resources ### The Fluid Mosaic Model: Skills # Your notes ### The Fluid Mosaic Model #### **Membranes** - Membranes form partially permeable barriers between the cell and its environment, between cytoplasm and organelles and also within organelles - Substances can cross membranes by diffusion, facilitated diffusion, osmosis and active transport - Membranes play a role in **cell signalling** by acting as an **interface** for **communication between cells** Membranes formed from phospholipid bilayers help to compartmentalise different regions within the cell, as well as forming the cell surface membrane #### Fluid mosaic model ■ The **fluid mosaic model** of membranes was first outlined in 1972 by **Singer and Nicolson** and it explains how biological molecules are arranged to form cell membranes #### Page 19 of 21 - The fluid mosaic model also helps to explain: - Passive and active movement between cells and their surroundings - Cell-to-cell interactions - Cell signalling - The fluid mosaic model describes cell membranes as 'fluid' because: - The **phospholipids** and **proteins** can **move around** within their own layers - The fluid mosaic model describes cell membranes as 'mosaics' because: - The **scattered pattern** produced by the **proteins** within the phospholipid bilayer looks somewhat like a mosaic when viewed from above - The **fluid mosaic model** of membranes includes four main components: - Phospholipids - Cholesterol - Glycoproteins and glycolipids - Integral and peripheral proteins #### The fluid mosaic model diagram The distribution of the proteins within the membrane gives a mosaic appearance and the structure of the proteins determines their position in the membrane ## Page 20 of 21 ### Examiner Tip You should be able to draw a two-dimensional diagram of the fluid mosaic model of membrane structure. You should show and **label** the following: - The **phospholipid bilayer**, making it clear which part is the phosphate head and which parts are the hydrocarbon tails - Integral proteins, e.g. channel/carrier - Peripheral proteins that do not extend into the hydrophobic region - **Glycoproteins** with a carbohydrate attached - Cholesterol, with the OH group next to the phosphate heads and the rest positioned next to the tails